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1. Potential Models

In the last twenty years, analytic embedded-atom potentials1 have gained wide use in

simulations of metals. In the embedded-atom approximation, the total energy of a system

of N interacting atoms is given by

U =
N

∑

i>j

φ(rij) +
N

∑

i

F (ρi) (S1)

where rij is the distance between two atoms, φ is a pairwise additive repulsive term, F is an

attractive many-body embedded-atom part, and ρi is a nonlinear function of the distances

of atom i from the other atoms. The specific forms of φ, ρi, and F for the embedded-atom

potentials parametrized to bulk solid-state data by Mei and Davenport2 (called MDEA) and

to nanoparticle and bulk energies by Jasper et al.3 (called NP-B) can be found in the original

references.2,3

The MDEA potential was originally parameterized to reproduce solid–state properties,

whereas the NP-B potential was parameterized using geometries and energies for clusters

and nanoparticles, as well as bulk properties. Here we review those parameterizations and

discuss their applicability to the simulations presented in the paper. We have also included

the NP-A4 potential in this summary, because the NP-A potential was fit using the same

strategy as was used to obtain the NP-B potential, and it is generally more accurate than

the NP-B potential for the test set, but more expensive to evaluate.

For solid-state simulations, an important test of an analytic potential energy function is

how well it can predict the cohesive energy (Ecoh), lattice constant (ae), and bulk modulus

(Be). (In addition to the bulk modulus, one may also consider the individual components

of the stress tensor, but we do not do so here.) Some care must be taken when comparing

equilibrium properties predicted by an analytic potential energy surface with experimentally

determined properties, which include thermal averaging and zero-point effects. Recently,

Gaudion et al.5 analyzed experimental data for bulk aluminum and removed thermal and

zero-point effects to obtain estimates for the bulk properties corresponding to the classical

equilibrium structure. These adjusted values are shown in Table S1 and may be directly
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compared with properties predicted by the analytic potential energy surfaces (or by electronic

structure calculations, if the Born-Oppenheimer approximation is assumed valid–see Section

2 of this supporting information). There are no experimentally determined properties for

the HCP and BCC crystal structures of aluminum, and for these values we scaled the DFT

results of Jaffe et al.6 In particular, their computed HCP and BCC cohesive energies were

then scaled by the ratio of experimental and calculated FCC cohesive energies.

Predictions of the bulk properties for the three analytic potential energy functions are

compared to the accurate values in Table S1. All the potentials do well for lattice constants

and cohesive energies. The NP-B potential was not fit to the FCC bulk modulus and

overestimates it by 106%, whereas the MDEA potential was fit to the bulk modulus and has

an error of 6%. The MDEA potential is qualitatively incorrect in its prediction of the relative

stability of the different crystal structures for aluminum, predicting nearly equal cohesive

energies for the FCC and HCP structures. These structural trends have been recognized

in the literature as difficult to reproduce using the kind of simple analytic potential energy

functions considered here. The NP-B potential, however, predicts the FCC-HCP gap with

the correct order of magnitude, although it is underestimated.

The fitting strategy used to obtain the NP-A and NP-B potentials was designed to

produce potentials that are accurate for systems smaller than the bulk, in particular for

systems sizes all the way down to Al2. In a previous paper,
4 we presented a database of

energies for Al clusters and nanoparticles. The largest cluster that we considered was Al177,

which is a 2 nm particle. In Table S2, we present mean unsigned errors for the NP-A, NP-B,

and MDEA potentials for the various particle size ranges. The most accurate potential is

the NP-A potential, which is accurate for clusters, nanoparticles, and bulk properties. The

NP-B potential is only slightly less accurate than the NP-A potential, whereas the MDEA

potential, which was not intended to be used for cluster or nanoparticle simulations and

was not fit to cluster or nanoparticle data, is about 7 times less accurate than the NP-B

potential for dimers and trimers and about 2 times less accurate for nanoparticles with 89

to 177 particles.
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As discussed in the paper, simulations using the NP-B and MDEA potentials were shown

to be sensitive to the quality of the potential in the small-cluster limit. The NP-B potential

does not predict significant gas-phase clustering of Al atoms for temperatures less than

2000 K, whereas the MDEA potential predicts a high degree of clustering in the gas phase for

these temperatures. This clustering is attributed to an overestimation of the bond strengths

for small clusters for MDEA. For example, the bond strength for Al2, when calculated with

accurate DFT, NP-A, NP-B, and MDEA is 1.56, 1.55, 1.94, and 4.25 eV, respectively, as

compared to the accurate value of 1.44 eV.7

2. Use of Born-Oppenheimer Approximation for Metals

The question sometimes arises of whether one can use the Born-Oppenheimer approxima-

tion for processes involving metals, and clearly this requires justification.8,9 As pointed out

in a recent review, most theoretical treatments of gas-phase and condensed-phase dynamics,

including metals, are based on the Born-Oppenheimer approximation, but this cannot be

justified for metals on the picosecond time scale.10 Similarly most computational thermo-

chemistry, even for metals, is based on the Born-Oppenheimer approximation, which means

that only a single potential energy surface, and hence a unique potential energy function,

is considered. This widely used model is also employed here, and thus the potential energy

function, which is fit in part to bulk metal properties like the cohesive energy, is in some sense

an “effective” potential. Although such potential functions are justified in part by their em-

pirical success (otherwise they would not be used so widely), it would be desirable in future

work to include the effect of low-energy electronic states directly and to study how well and

how transferably these effects can be represented by an effective potential. We note, with

regard to such future work, that the effect of excited electronic states will be quantitatively

different for bulk metals, for nanoparticles, for clusters, and for critical properties.
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3. Simulation and Analysis Methods

The vapor-liquid coexistence curve is determined for the MDEA and NP-B potentials

using Gibbs ensemble Monte Carlo (GEMC).11,12 GEMC utilizes two separate simulation

boxes that are in thermodynamic contact, but do not have an explicit interface. In addition

to conventional Monte Carlo moves, particle and volume exchanges between the two boxes

allow one to establish thermal, phase, and mechanical equilibrium, respectively. As a result,

for a given state point the properties of the coexisting phases can be determined directly

from a single simulation. A total of 350 atoms is used for most of the GEMC simulations

with the overall system volume adjusted so that about 50-100 particles are found in the

vapor phase. After equilibration periods consisting of at least 1.5× 107 MC moves, averages

are collected over at least 3.5 × 107 moves. An additional canonical ensemble simulation is

carried out at the vapor density obtained from GEMC, and the equilibrium vapor pressure

at each temperature is obtained by using the thermodynamic definition of pressure.13 To

determine the effect of the system size, additional GEMC simulations were performed for

800 atoms at the two highest temperatures for the NP-B potential (5000 and 5250 K). For

the larger system size, the equilibration period is 1.6 × 107 MC moves, and averages are

collected over 4× 108 MC moves.

Two extrapolation methods are used to estimate the critical temperatures and densities

from the GEMC results. In the first method, the critical temperature, Tc, is estimated using

a weighted fit of the simulation data above the boiling point to the density scaling law12

with an Ising critical exponent of 0.325. Once the critical temperature is known, the critical

density is obtained from the law of rectilinear diameters.12 The other approach is similar,

but it uses additional terms in the scaling and rectilinear laws to account for deviations from

the corresponding states.14 The critical constants for either potential presented in this work

are the averages of the estimates obtained from these two methods. The critical pressure is

computed from a separate canonical-ensemble simulation at Tc and ρc. The normal boiling

point is obtained from a Clausius-Clapeyron15 fit to the saturated vapor pressure of the four

GEMC simulations that yield a pressure close to 1 atm.
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4. Numerical Results and Deviations from the Ideal-Gas Law

Tables S3 and S4 summarize the GEMC data calculated for the systems with 350 atoms

using the NP-B and MDEA potentials, respectively. Standard deviations for the saturated

liquid and vapor densities, the saturated vapor pressures, and heats of vaporization are

obtained by dividing the total number of samples into 10 blocks. At the two highest temper-

atures, GEMC simulations for the NP-B potential were carried out for two system sizes. The

coexistence densities for the 350- and 800-atom systems agree to within the statistical un-

certainties. Thus, it appears that finite-size errors for the critical properties are smaller than

those introduced by the procedures used to fit the coexistence curve. A rigorous finite-size

scaling analysis16 is not possible for simulations in the Gibbs ensemble, but a comparision

of simulation data for Lennard-Jonesium17,18,19 points to finite-size errors of less than 1% for

the system size used here.

Figure S1 quantifies the deviation of the vapor-phase equation of state from the ideal-gas

law over the entire range of simulated temperatures by plotting the compressibility factor,

Z, given by

Z =
pvv

RT
(S2)

where pv is the vapor pressure, v is the molar volume, R is the ideal-gas constant, and T

is the temperature. The NP-B vapor deviates significantly from an ideal gas only at higher

temperatures. In contrast, the MDEA vapor phase is very nonideal even at temperatures

close to the experimental triple point.
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Tables

Table S1: The experimental and calculated cohesive energies (Ecoh), lattice constants (ae),

and bulk modulus (Be) given in eV/atom, Å, and eV/Å
3, respectively.

Method FCC HCP BCC

Ecoh ae Be
a Ecoh Ecoh

Accurateb 3.43 4.0217 0.507 3.39 3.33

NP-A 3.4278 4.0101 0.721 3.4158 3.3368

NP-B 3.4276 4.0334 1.054 3.4090 3.3505

MDEA 3.3900 4.0500 0.481 3.3859 3.3603

aThe conversion factor from 1011 N/m2 to eV/Å3 is 0.62415.
bAdjusted experimental values from Ref 5 for FCC, and scaled DFT results from Ref 6 for HCP and

BCC.
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Table S2: Mean unsigned errors (eV/atom) averaged over the data set presented in Ref 4.

Particle Size NP-A NP-B MDEA

2 0.01 0.09 0.55

3 0.10 0.08 0.63

4 0.09 0.11 0.54

5-7 0.08 0.08 0.36

8-13 0.04 0.05 0.23

14-19 0.06 0.08 0.27

20-43 0.04 0.07 0.18

50-55 0.03 0.02 0.13

56-79 0.02 0.03 0.11

80-87 0.02 0.03 0.08

89-177 0.02 0.04 0.08

bulk 0.02 0.03 0.03

overall 0.03 0.05 0.16

S10



Table S3: GEMC data obtained for the NP-B potential.

N T ρl ρv pv ∆Hvap

(K) (kg/m3) (kg/m3) (kPa) (kJ/mol)

350 1100 2410± 1 (1.747± 0.062)× 10−10 (5.92± 0.21)× 10−8 311

350 1200 2387± 1 (2.635± 0.039)× 10−9 (9.71± 0.15)× 10−7 310

350 1350 2350± 1 (7.07± 0.11)× 10−8 2.94± 0.05)× 10−5 309

350 1500 2320± 1 (1.035± 0.021)× 10−6 (4.77± 0.10)× 10−4 307

350 2000 2210± 1 (3.497± 0.051)× 10−4 (2.13± 0.03)× 10−1 300

350 2500 2110± 1 (1.078± 0.013)× 10−2 7.96± 0.01 291

350 3000 2006± 1 (1.186± 0.012)× 10−1 (9.89± 0.13)× 10 276

350 4000 1790± 1 2.883± 0.043 (2.52± 0.07)× 103 229

350 4500 1670± 1 9.25± 0.23 (7.52± 0.34)× 103 200

350 5000 1536± 1 (3.55± 0.17)× 101 (2.02± 0.27)× 104 145

350 5250 1462± 2 (1.12± 0.11)× 102 (3.2± 1.9)× 104 89

800 5000 1537± 1 (3.69± 0.11)× 101

800 5250 1465± 3 (9.1± 1.6)× 101
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Table S4: GEMC data obtained for the MDEA potential.

T ρl ρv pv ∆Hvap

(K) (kg/m3) (kg/m3) (kPa) (kJ/mol)

1100 2260± 1 (7.503± 0.059)× 10−8 (1.23± 0.04)× 10−5 102

1200 2225± 1 (1.481± 0.039)× 10−6 (2.56± 0.05)× 10−4 100

1500 2101± 1 (4.351± 0.011)× 10−3 (8.64± 0.16)× 10−1 94

1600 2065± 1 (1.033± 0.003)× 10−1 (2.30± 0.04)× 101 87

1800 1984± 1 (3.549± 0.036)× 10−1 (8.51± 0.27)× 101 87

1900 1942± 1 (7.95± 0.16)× 10−1 (1.96± 0.11)× 102 85

2000 1899± 1 (1.442± 0.027)× 100 (3.65± 0.21)× 102 82

2200 1809± 1 (4.15± 0.10)× 101 (1.07± 0.08)× 103 77

2400 1714± 1 (1.063± 0.043)× 102 (2.61± 0.35)× 103 69

2500 1664± 2 (1.754± 0.092)× 102 (4.20± 0.77)× 103 65

2600 1606± 2 (3.05± 0.20)× 102 (6.6± 1.7)× 103 57

2700 1553± 3 (5.64± 0.35)× 102 (9.8± 3.1)× 103 46
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Figure S1: Temperature dependence of the compressibility factor for the saturated vapor

phase calculated using the MDEA (squares) and NP-B (circles) potentials.
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